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Introduction 

In this paper we discuss the situation where 
there are two distinct multivariate normal popu- 
lations, Iii and n2, with common variance- covari- 
ance matrix. We observe a p- vector X and must 
assign X to or n2 based on the components 
of X and our classification rule. If the parame 
ters of the distributions of populations and 
n2 are known, this information is utilized in the 
construction of a classification rule. If the pa- 

rameters are not known, which is the usual situa- 
tion, then random samples from and n2 are 

used to estimate these parameters and to construct 
a classification rule. We shall use as our classi- 
fication rule, Anderson's discriminant function. 

One of the problems that arise in the practi- 
cal applications of discriminant analysis is ana- 
lytically measuring the goodness of the classifi- 
cation rule. This rule must be evaluated based 
on some criterion of goodness of classification. 
For our criterion in this study we shall use the 
total probability of misclassification. In gen- 
eral, since the parameters of the populations are 
usually unknown, the probability of misclassifi- 
cation must also be estimated from random samples. 

The samples on which one bases the classifi- 
cation rule and estimates the probability of mis- 
classification often contain incomplete observa- 
tion vectors, that is, vectors in which one or 
more components are missing. In many such situa- 
tions these incomplete vectors are not included 
in the construction of a classification rule or 
in the estimation of the probability of misclassi- 
fication. The primary purpose of this paper is to 
investigate a method for incorporating these in- 
complete observation vectors in the construction 
of the classification rule and the estimation of 
the probability of miscalssification. This method 
and the commonly practiced method of ignoring 
these incomplete vectors will be compared by 
computer simulation. 

The use of discriminant analysis techniques 

on incomplete data sets is an area where very 
little research has been done. Jackson (1968) in- 
vestigated a classification problem which had 
missing values in a large data set. The missing 
values were estimated using means and regression 
techniques and for the problem under study, the 
estimation procedure using missing data gave bet- 
ter results than the procedure of ignoring the 
observations with missing values. 

Chan and Dunn (1972) investigated the problem 
of constructing a discriminant function based on 
samples, which contained incomplete observation 
vectors. Several methods of estimating the miss- 
ing components of these vectors were utilized and 
the resulting-vectors were used to construct the 
discriminant function. They concluded that no 
method was best for every situation, and gave 
guidelines to use in choosing the best method for 
various situations. 

Hocking -Smith Estimation Procedure 
A generalization of the estimation procedure 

reported by Hocking -Smith (1968) will be applied 
to random samples from multivariate normal 
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populations, which contain incomplete vectors. 
This procedure requires that optimal estimators 
of the mean vectors and dispersion matrices are 
available for each group of observations, the 
groups being collections of observation vectors 
with identical patterns of incompleteness. The 
procedure has been shown to be essentially equiva- 
lent to solving the maximum likelihood equations 
for the incomplete situation. The estimators have 
been shown to be consistent and asymptotically 
efficient. 

Note that we are estimating the mean vectors 
and the variance- covariance matrices without esti- 
mating the missing components of the incomplete 
vectors. Those missing components could, however, 
be estimated by using the previously mentioned 
estimators and regression techniques. 

To illustrate the form of the estimatcrs, 
consider a set of observations which follow a p- 
variate normal distribution with unknown mean vec- 
tor and variance -covariance matrix E1. Let 
there be n1 independent complete observation vec- 
tors and n2 independent incomplete observation 
vectors which follow the q- variate marginal dis- 
tribution. We define the elementary matrix D such 
that u2 is the mean of the marginal and 

=E2 the variance -covariance matrix for the 
marginal distribution. 

The joint likelihood L for these two groups 

of observations is given by L = L1L2, where L1 
and L2 are the likelihood functions associated 
with the two groups of observation vectors. The 
Hocking -Smith estimates are given by 

2111 = 01- 

2E1 E1 - 

where and N = n1 +n2. These 
estimates are in general maximum likelihood consi- 
dering the combined likelihood function L if E2 is 

replaced by Ë2 + H2, 

where H2= n2(u2-D2i1)(û2-D2ûi)'. 

The extension to more than two groups follows 
sequentially and is easily adaptable to computer 
programming. For further information the 
interested reader is referred to Hocking et al. 

(1969). 

Estimators of the Probability of Misclassifi- 

cation 
The problem of estimating the probability of 

misclassification has received a considerable 

amount of attention in the statistical literature. 

A fairly complete review of the literature on this 

problem is given by Toussaint (1974). The estima- 

tors that are considered in this study are as 

follows: 

1. The estimator -D /2), where 

D = -112)' E 

2. The estimator D -/2), where 
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D' =(n1 + n2 - p - 3)(ni + n2 - 2) 
-1D2. 

3. The McLachlan estimator, which is defined in 



McLachlan (1975). 
For the discriminant functions based on only 

the complete observations these estimators will 
be denoted by P1,P2 dnd P. respectively. For 
the discrominant function based on all of the 
observation vegtors these estimates will be 
denoted by 41, &2 and am, respectively. The 
estimators and were studied by Lachenbruc' 
and Mickey (1968) and Sorum (1972). 

Simulation Procedure and Results 
Random samples generated from each of 

two populations and a specified percentage of 
vectors are randomly chosen and made incomplete. 
The groups for the Hocking -Smith estimator pro- 
cedure are formed and the estimates of the para- 
meters for each group calculated. The estimates 
from the group of complete vectors are utilized 
in the calculation of the discriminant function 
and the previously mentioned estimators for the 
probability of misclassification are calculated. 
Next, the Hocking -Smith estimates are used in 
calculating the discriminant function and the 
estimators for probability of misclassification 
are calculated. This procedure is repeated at 
least ten times for each specified set of simula- 
tion variables. The mean and standard deviation 
are calculated for each estimator of the proba 
bility of misclassification. 

The simulation results obtained by varying 
the values of the correlation coefficient p from 
0 to .9 by increments of .1 indicated that the 
relative performance of the estimators were not 
effected by this simulations variable. The same 
was found to be true for varying the form of the 
mean vector. Hence the simulation results pre- 
sented in the tables and in the figures are for 
the pooled simulations of p and the form of the 
mean vector. The tables and figures presented 
in this paper are only for the number of vari- 
ables equal to three and the Mahalanobis distance 
equal to four. The percentage of missing values 
were chosen to be 20, 40 and 80 with three groups 
of vectors for the Hocking -Smith estimation 
procedure. These simulation results are part of 
the simulations conducted by Bohannon (1976) and 

are representative of those results. 
Frequencies and cumulative proportions of 

where is the optimum probability of misclassi- 
fication and as the estimator of this probabi- 
lity were calculated for the simulation combina- 
tions with end points .0125, .025, .0375, .05, 

.0625, .075, and the last interval greater than 

.075. Figures 1 to 3 present these results and 
Table 1 gives the means and standard deviations 
for these estimators. 

In analyzing the previously mentioned tables 
and figures, there are several observations that 

are apparent. One being, that as the percentage 

of incomplete data increases, the variances of 
the estimators increase. However, the increase 

for the estimators based on the Hocking -Smith 

estimates is not as great as that for the 

estimators based only on complete vectors. Our 

simulations also indicate that the McLachlan 

estimator has a larger variance in general than 

the other estimators for our range of population 
parameters. The simulations indicate that â2 is 

the best estimator of a based on the criterion 
of unbiasedness and minimum variance and in 

general the incomplete vectors do provide useful 
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information for classifying the observation 
vectors. 
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TABLE 1 

TABULATION FOR ESTIMATORS WITH p 3, - 2, AND a = .1587 

P1 P2 P 
m 

al a2 a 

M 20% mean .1516 .1589 .1653 .1550 .1625 .1660 

ND 126 
std. 

dey. 
.0337 .0337 .0357 .0337 .0318 .0332 

M 40% mean .1462 .1591 .1642 .1513 .1588 .1621 

ND 125 std. 
dey. 

.0393 .0393 .0424 .0357 .0357 .0374 

M 80% mean .1345 .1804 .1908 .1518 .1591 .1626 

ND 115 
std. 

dey. 
.0580 .0588 .0743 .0409 .0411 .0480 
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e = - 

FIGURE 3 

115 LINEAR DISCRIMINANT FUNCTIONS WITH p = 3, = 2, m 80% 

.0625 .075 
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